Explicit constructions for genus 3 Jacobians

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 9 EXPLICIT CONSTRUCTIONS FOR GENUS 3 JACOBIANS Jesus Romero - Valencia & Alexis

Given a canonical genus three curve X = {F = 0}, we construct, emulating Mumford discussion for hyperelliptic curves, a set of equations for an affine open subset of the jacobian JX. We give explicit algorithms describing the law group in JX. Finally we introduce a related construction by means of an imbedding of the open set previously described in a Grassmanian variety.

متن کامل

Constructing genus 3 hyperelliptic Jacobians with CM

Given a sextic CM field K, we give an explicit method for finding all genus 3 hyperelliptic curves defined over C whose Jacobians are simple and have complex multiplication by the maximal order of this field, via an approximation of their Rosenhain invariants. Building on the work of Weng [27], we give an algorithm which works in complete generality, for any CM sextic field K, and computes mini...

متن کامل

An Explicit Theory of Heights for Hyperelliptic Jacobians of Genus Three

The goal of this paper is to take up the approaches used to deal with Jacobians and Kummer surfaces of curves of genus 2 by Cassels and Flynn [CF] and by the author [Sto1, Sto3] and extend them to hyperelliptic curves of genus 3. Such a curve C is given by an equation of the form y = f(x), where f is a squarefree polynomial of degree 7 or 8. We denote its Jacobian by J . Identifying points with...

متن کامل

Visualizing Elements of Sha[3] in Genus 2 Jacobians

Mazur proved that any element ξ of order three in the Shafarevich-Tate group of an elliptic curve E over a number field k can be made visible in an abelian surface A in the sense that ξ lies in the kernel of the natural homomorphism between the cohomology groups H(Gal(k/k), E) → H(Gal(k/k), A). However, the abelian surface in Mazur’s construction is almost never a jacobian of a genus 2 curve. I...

متن کامل

Twists of Genus Three Jacobians

There exists a weight 1 Katz-Siegel modular form ξ1 ∧ ξ2 ∧ ξ3 for Abelian schemes of relative dimension 3; moreover the following statements hold. d Let k be a field of characteristic different to 2. Let (A, a) be a principally polarised Abelian threefold with indecomposable polarisation a; then if χ18(A, a) 6= 0, we have χ18(A, a) (ξ1 ∧ ξ2 ∧ ξ3) ∈ k∗4 if and only if (A, a) is a k rational Jaco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2014

ISSN: 0035-7596

DOI: 10.1216/rmj-2014-44-4-1367